RoHS **GREEN** (5-2008) www.vishay.com ### Vishay Semiconductors # **IR Receiver Modules for Remote Control Systems** #### **MECHNICAL DATA** Pinning for HS0038BD: $1 = OUT, 2 = GND, 3 = V_S$ #### **FEATURES** - Very low supply current - · Photo detector and preamplifier in one package - Internal filter for PCM frequency - · Improved shielding against EMI - Supply voltage: 2.5 V to 5.5 V - · Improved immunity against ambient light - Insensitive to supply voltage ripple and noise - Material categorization: For definitions of compliance Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u> #### **DESCRIPTION** These products are miniaturized receivers for infrared remote control systems. A PIN diode and a preamplifier are assembled on a lead frame, the epoxy package acts as an IR filter. The demodulated output signal can be directly decoded by a microprocessor. The HS0038BD is compatible with all common IR remote control data formats and can suppress almost all spurious pulses from energy saving fluorescent lamps. This component has not been qualified according to automotive specifications. | PARTS TABLE | | | | |-------------------|------------------------------|--|--| | CARRIER FREQUENCY | STANDARD APPLICATIONS (AGC2) | | | | 38 kHz | HS0038BD | | | ### **BLOCK DIAGRAM** ### **APPLICATION CIRCUIT** $R_{_1}$ and $C_{_1}$ are recommended for protection against EOS. Components should be in the range of 33 Ω < $R_{_1}$ < 1 $k\Omega,$ $C_{_1}$ > 0.1 $\mu F.$ www.vishay.com ## Vishay Semiconductors | ABSOLUTE MAXIMUM RATINGS | | | | | | | | |-----------------------------|--|------------------|---------------------------------|------|--|--|--| | PARAMETER | TEST CONDITION | SYMBOL | VALUE | UNIT | | | | | Supply voltage | | Vs | - 0.3 to + 6 | V | | | | | Supply current | | I _S | 3 | mA | | | | | Output voltage | | Vo | - 0.3 to (V _S + 0.3) | V | | | | | Output current | | Io | 5 | mA | | | | | Junction temperature | | T _j | 100 | °C | | | | | Storage temperature range | | T _{stg} | - 25 to + 85 | °C | | | | | Operating temperature range | | T _{amb} | - 25 to + 85 | °C | | | | | Power consumption | T _{amb} ≤ 85 °C | P _{tot} | 10 | mW | | | | | Soldering temperature | $t \le 10 \text{ s}, 1 \text{ mm from case}$ | T _{sd} | 260 | °C | | | | #### Note Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability. | ELECTRICAL AND OPTICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified) | | | | | | | |--|--|---------------------|------|------|------|-------| | PARAMETER | TEST CONDITION | SYMBOL | MIN. | TYP. | MAX. | UNIT | | Supply current | $E_{v} = 0, V_{S} = 3.3 V$ | I _{SD} | 0.27 | 0.35 | 0.45 | mA | | | $E_v = 40 \text{ klx, sunlight}$ | I _{SH} | | 0.45 | | mA | | Supply voltage | | V _S | 2.5 | | 5.5 | V | | Transmission distance | E_{v} = 0, test signal see fig. 1, IR diode TSAL6200, I_{F} = 150 mA | d | | 45 | | m | | Output voltage low | $I_{OSL} = 0.5 \text{ mA}, E_e = 0.7 \text{ mW/m}^2,$ test signal see fig. 1 | V _{OSL} | | | 100 | mV | | Minimum irradiance | Pulse width tolerance: t_{pi} - 5/f ₀ < t_{po} < t_{pi} + 6/f ₀ , test signal see fig. 1 | E _{e min.} | | 0.08 | 0.15 | mW/m² | | Maximum irradiance | t_{pi} - 5/f ₀ < t_{po} < t_{pi} + 6/f ₀ ,
test signal see fig. 1 | E _{e max.} | 30 | | | W/m² | | Directivity | Angle of half transmission distance | Ψ1/2 | | ± 45 | | deg | ### **TYPICAL CHARACTERISTICS** (T_{amb} = 25 °C, unless otherwise specified) Fig. 1 - Output Active Low Fig. 2 - Pulse Length and Sensitivity in Dark Ambient # Vishay Semiconductors Fig. 3 - Output Function Fig. 4 - Output Pulse Diagram Fig. 5 - Frequency Dependence of Responsivity Fig. 6 - Sensitivity in Bright Ambient Fig. 7 - Sensitivity vs. Supply Voltage Disturbances Fig. 8 - Max. Envelope Duty Cycle vs. Burst Length ### www.vishay.com # Vishay Semiconductors Fig. 9 - Sensitivity vs. Ambient Temperature Fig. 10 - Relative Spectral Sensitivity vs. Wavelength Fig. 11 - Horizontal Directivity Fig. 12 - Sensitivity vs. Supply Voltage # Vishay Semiconductors #### SUITABLE DATA FORMAT These products are designed to suppress spurious output pulses due to noise or disturbance signals. Data and disturbance signals can be distinguished by the devices according to carrier frequency, burst length and envelope duty cycle. The data signal should be close to the band-pass center frequency (e.g. 38 kHz) and fulfill the conditions in the table below. When a data signal is applied to the IR receiver in the presence of a disturbance signal, the sensitivity of the receiver is reduced to insure that no spurious pulses are present at the output. Some examples of disturbance signals which are suppressed are: - DC light (e.g. from tungsten bulb or sunlight) - · Continuous signals at any frequency - Strongly or weakly modulated noise from fluorescent lamps with electronic ballasts (see figure 14 or figure 15) Fig. 13 - IR Signal from Fluorescent Lamp with Low Modulation Fig. 14 - IR Signal from Fluorescent Lamp with High Modulation | | HS0038BD | | | | |--|--|--|--|--| | Minimum burst length | 10 cycles/burst | | | | | After each burst of length a minimum gap time is required of | 10 to 70 cycles
≥ 10 cycles | | | | | For bursts greater than a minimum gap time in the data stream is needed of | 70 cycles
> 4 x burst length | | | | | Maximum number of continuous short bursts/second | 1800 | | | | | Recommended for NEC code | yes | | | | | Recommended for RC5/RC6 code | yes | | | | | Recommended for Sony code | yes | | | | | Recommended for Thomson 56 kHz code | yes | | | | | Recommended for Mitsubishi code (38 kHz, preburst 8 ms, 16 bit) | yes | | | | | Recommended for Sharp code | yes | | | | | Suppression of interference from fluorescent lamps | Most common disturbance signals are suppressed | | | | # Vishay Semiconductors ### **PACKAGE DIMENSIONS** in millimeters Drawing-No.: 6.550-5169.01-4 Issue: 9; 03.11.10 13655